System reliability prediction model based on evidential reasoning algorithm with nonlinear optimization

نویسندگان

  • Chang-Hua Hu
  • Xiao-Sheng Si
  • Jian-Bo Yang
چکیده

In this paper, a novel reliability prediction technique based on the evidential reasoning (ER) algorithm is developed and applied to forecast reliability in turbocharger engine systems. The focus of this study is to examine the feasibility and validity of the ER algorithm in systems reliability prediction by comparing it with some existing approaches. To determine the parameters of the proposed model accurately, some nonlinear optimization models are investigated to search for the optimal parameters of forecasting model by minimizing the mean square error (MSE) criterion. Finally, a numerical example is provided to demonstrate the detailed implementation procedures. The experimental results show that the prediction performance of the ER-based prediction model outperforms several existing methods in terms of prediction accuracy or speed. Crown Copyright 2009 Published by Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comprehensive Decision Modeling of Reverse Logistics System: A Multi-criteria Decision Making Model by using Hybrid Evidential Reasoning Approach and TOPSIS (TECHNICAL NOTE)

In the last two decades, product recovery systems have received increasing attention due to several reasons such as new governmental regulations and economic advantages. One of the most important activities of these systems is to assign returned products to suitable reverse manufacturing alternatives. Uncertainty of returned products in terms of quantity, quality, and time complicates the decis...

متن کامل

Improved Optimization Process for Nonlinear Model Predictive Control of PMSM

Model-based predictive control (MPC) is one of the most efficient techniques that is widely used in industrial applications. In such controllers, increasing the prediction horizon results in better selection of the optimal control signal sequence. On the other hand, increasing the prediction horizon increase the computational time of the optimization process which make it impossible to be imple...

متن کامل

Analysis and Synthesis Using the Fuzzy Rule-based Evidential Reasoning Approach

The main objective of this paper is to propose a framework for modelling, analysing and synthesizing system safety of engineering systems or projects on the basis of a generic rule-based inference methodology using the evidential reasoning (RIMER) approach. The framework is divided into two parts. The first one is for fuzzy rule-based safety estimation, referred to as a fuzzy rule-based evident...

متن کامل

A note on article "The evidential reasoning approach for multiple attribute decision analysis using interval belief degrees"

Multiple attribute decision analysis (MADA) problems having both quantitative and qualitative attributes under uncertainty can be modeled using the evidential reasoning (ER) approach. Several types of uncertainties such as ignorance and fuzziness can be modeled in the ER framework. In this paper, the ER approach will be extended to model new types of uncertainties including interval belief degr...

متن کامل

E2GK-pro: An Evidential Evolving Multimodeling Approach for Systems Behavior Prediction

Nonlinear dynamic systems identification and nonlinear dynamic behavior prediction are important tasks in several areas of industrial applications. Multiple works proposed multimodel-based approaches to model nonlinear systems. Multimodeling permits to blend different model types together to form hybrid models. It advocates the use of existing, well known model types within the same model struc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2010